Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803.

نویسندگان

  • Sowmya Nagarajan
  • Debra M Sherman
  • Isaac Shaw
  • Louis A Sherman
چکیده

There are two closely related hik31 operons involved in signal transduction on the chromosome and the pSYSX plasmid in the cyanobacterium Synechocystis sp. strain PCC 6803. We studied the growth, cell morphology, and gene expression in operon and hik mutants for both copies, under different growth conditions, to examine whether the duplicated copies have the same or different functions and gene targets and whether they are similarly regulated. Phenotype analysis suggested that both operons regulated common and separate targets in the light and the dark. The chromosomal operon was involved in the negative control of autotrophic events, whereas the plasmid operon was involved in the positive control of heterotrophic events. Both the plasmid and double operon mutant cells were larger and had division defects. The growth data also showed a regulatory role for the chromosomal hik gene under high-CO(2) conditions and the plasmid operon under low-O(2) conditions. Metal stress experiments indicated a role for the chromosomal hik gene and operon in mediating Zn and Cd tolerance, the plasmid operon in Co tolerance, and the chromosomal operon and plasmid hik gene in Ni tolerance. We conclude that both operons are differentially and temporally regulated. We suggest that the chromosomal operon is the primarily expressed copy and the plasmid operon acts as a backup to maintain appropriate gene dosages. Both operons share an integrated regulatory relationship and are induced in high light, in glucose, and in active cell growth. Additionally, the plasmid operon is induced in the dark with or without glucose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions of the Duplicated Hik 31 Operons in Central 1 Metabolism and Responses to Light , Dark and Carbon 2 Sources in Synechocystis Sp . Strain Pcc 6803

FUNCTIONS OF THE DUPLICATED HIK31 OPERONS IN CENTRAL 1 METABOLISM AND RESPONSES TO LIGHT, DARK AND CARBON 2 SOURCES IN SYNECHOCYSTIS SP. STRAIN PCC 6803. 3 4 Sowmya Nagarajan, Debra M. Sherman , Isaac Shaw 3 and 5 Louis A. Sherman * 6 Department of Biological Sciences 1 and Life Sciences Microscopy facility, 7 Department of Horticulture , Purdue University, West Lafayette, Indiana 47907 8 9 Run...

متن کامل

Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803.

The plasmid hik31 operon (P3, slr6039-slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon a...

متن کامل

Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses.

We have investigated the response of the cyanobacterium Synechocystis sp. PCC 6803 during growth at very low O2 concentration (bubbled with 99.9 % N(2)/0.1 % CO2). Significant transcriptional changes upon low-O2 incubation included upregulation of a cluster of genes that contained psbA1 and an operon that includes a gene encoding the two-component regulatory histidine kinase, Hik31. This regula...

متن کامل

Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803

The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulato...

متن کامل

A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose.

The reason(s) for glucose sensitivity in certain cyanobacterial strains is poorly understood. Inactivation of genes encoding the putative sensor kinase Hik31 in Synechocystis sp. strain PCC 6803 resulted in a mutant unable to grow in the presence of D-glucose. Sensitivities to D-glucose, its analogue 2-deoxy-D-glucose, and fructose, were alleviated in mutants in which glcP, encoding the glucose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 2  شماره 

صفحات  -

تاریخ انتشار 2012